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Abstract. We study the relaxation properties of the voter model with i.i.d. random bias. We prove
under mild conditions that the disorder-averaged relaxation of this biased random voter model is
faster than a stretched exponential with exponentd/(d + α), where 0< α 6 2 depends on the
transition rates of the non-biased voter model. Under an additional assumption, we show that
the above upper bound is optimal. The main ingredient of our proof is a result of Donsker and
Varadhan.

1. Introduction

Recently, important progress has been made in the rigorous analysis of the dynamical properties
of random spin systems. The best known class of random spin systems consists of spin glasses
equipped with a Glauber dynamics (kinetic Ising models with random interaction and single
spin-flip time evolution). These stochastic models are used in Monte Carlo simulations to
mimic the time evolution of disordered systems (see, e.g., Ogielski 1985).

The following results are stated with probability one with respect to the disorder and
uniform in the initial condition. The assumptions under which they are derived differ slightly
(cf the original papers for the precise statements). Zegarlinski (1994) proves the absence of a
spectral gap in random Glauber models in dimensiond > 1. As a consequence, the decay of
time-dependent correlations in equilibrium cannot be exponentially fast. Moreover, he shows
in dimensiond = 1 that the decay of local functions can be bounded above by a stretched
exponential whose exponent can be chosen arbitrarily in the open interval(0, 1). Guionnet
and Zegarlinski (1996) extend Zegarlinski’s result. In particular, they find the same stretched
exponential bound in dimensiond = 2, even for continuous-spin systems. Ford > 3 they
are able to derive a relaxation faster than algebraic (Guionnet and Zegarlinski 1997). Cesi
et al (1997a) succeed in establishing for the Glauber model in arbitrary dimensiond > 1, but
under more restricted conditions on the distribution of the interaction, an upper bound for the
asymptotic relaxation of local observables with decay faster than any stretched exponential.
Furthermore, they obtain under even more severe assumptions (not valid for the diluted Ising
model) a lower bound which is similar to the upper bound, implying that the latter cannot be
improved in general.
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Cesiet al (1997a) also study the (physically more relevant) disorder-averaged relaxation
of Glauber models. In dimensiond > 2 they find an upper bound with decay slower than any
stretched exponential but faster than algebraic. In a particular case, they derive a lower bound
which is again similar to the upper bound. Both bounds are in agreement with a non-rigorous
result for the asymptotic relaxation of the spin autocorrelation function in the diluted Ising
model below the threshold for bond percolation (see Bray (1989) and references therein).

Alexanderet al (1998) confirm for the diluted Ising model in dimensiond > 2 all the
results of Cesiet al (1997a), even above the percolation threshold, except the almost sure lower
bound which they prove only with positive probability (see also Cesiet al 1997b, Martinelli
1997).

The previously mentioned results concern spin systems whose single-flip dynamics are
reversible with respect to some Gibbs measure corresponding to a random potential. A powerful
tool in the analysis of these systems is the so-called logarithmic Sobolev inequality. Gielis
and Maes (1996) tackle the problem of estimating the asymptotic relaxation in a more general
class of random spin systems with quenched disorder. Their method consists of a coupling of
the spin system to the contact process and the use of percolation techniques on the graphical
representation of the contact process. They obtain, with probability one with respect to the
disorder, an upper bound which decays faster in time than any power law (see remark 2.7
below). Moreover, in the case of directed interactions they improve the upper bound to a
stretched exponential whose exponent can be taken arbitrarily in the open interval(0, 1

2). No
lower bound is known. However, it is believed that their estimate is far from optimal.

To the best of our knowledge, no rigorous bounds are yet available for the disorder-
averaged relaxation of spin systems in this larger class. In the present paper we prove, under
the mild assumption of a positive probability for each voter to be biased, that the disorder-
averaged asymptotic relaxation of local functions in the biased random voter model is, uniform
in the initial condition, bounded from above by a stretched exponential decay in time with
exponentd/(d +α), whered > 1 is the dimension of the hypercubic latticeZd and 0< α 6 2
depends only on the transition rates of the non-biased voter model. Moreover, the upper
bound cannot be improved in general: under the assumption that each voter is non-biased with
positive probability, we prove that the disorder-averaged asymptotic relaxation of monotonic
local functions is bounded from below by a stretched exponential with the same exponent.
The relaxation of the particular local function giving the opinion of the voter at the origin is
exactly the probability that a random walker in a Bernoulli field of traps has not been trapped
in the time interval [0, t ]. This probability is known to decay as a stretched exponential, as a
consequence of the result of Donsker and Varadhan (1979). The approach of our proof, which
applies to any local function, consists of a coupling of the dual process of the biased voter
model with a collection of independent random walkers, and the usual application of the result
of Donsker and Varadhan (1979) about the number of distinct sites visited by a random walk.

The model studied in this paper is an example of a spin system with an annealed random
field. Often a distinction is made between spin systems with a random field and those with a
random coupling between the constituents. The most famous example of the latter kind is the
kinetic Ising model with an exchange interaction of random strength (such as, for example, in
the diluted Ising model). Our model is quite different from the random coupling case, which
is much harder. The biased voter model can be viewed as a random field kinetic Ising model at
zero temperature. Note that a model different from ours has been studied by Ferreira (1990) in
dimension one. It is called a biased voter model in a random environment and is a spin system
with random couplings.

We have restricted the above discussion to rigorous results for random spin systems. There
are other particle systems in random environment worth mentioning. An extensively studied
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class of such systems consists of random walks in a random environment (see, for example,
den Hollander 1984, den Hollanderet al 1992a, b, 1994). The random trap model has even
been studied with a time-evolving environment in den Hollander and Shuler (1992) and Redig
(1994). The asymptotics of the survival probability in the random trap model is closely related
to our result (see the discussion in den Hollander (1984) and the references given therein).

The physics behind the phenomenon of slower than exponential decay is in all these cases
the same. In the diffusion model with traps there exist large regions free of traps, be it with a
small probability. Particles diffusing in trap-free regions will survive significantly longer than
those in areas with an average or high density of traps, contributing in an anomalous way to
the asymptotics of the decay. Similarly, in spin glasses the ordering of the spins decays very
slowly in areas of strong interaction. In the present model areas with a small amount of biased
voters can display a dominance of opinion 1 during a long time, before decaying to opinion 0.

This paper is organized as follows. In section 2 we define the biased voter model and its
randomized version, state our result and mention the theorem of Donsker and Varadhan (1979)
on which the proof of our result relies heavily. In section 3 we describe the coalescing dual
process of the biased voter model, and prove the upper and lower bound of theorem 2.5.

2. Statement of result

A spin system is a continuous-time Markov process(ηt )t>0 with configuration space

X = {0, 1}Zd = {η : Zd → {0, 1} : x 7→ η(x)
}
. (2.1)

Let ηx be the configuration obtained from configurationη by changing the state at sitex, i.e.

ηx(y) =
{

1− η(x) if y = x
η(y) if y 6= x.

(2.2)

The infinitesimal dynamics of a spin system is specified by a Markov pregenerator�, given
by

�f (η) =
∑
x∈Zd

c(x, η)[f (ηx)− f (η)] (2.3)

and defined on a suitable subclass ofC(X), the set of real-valued continuous functions with
domainX. (On{0, 1} we assume the discrete topology and onX the product topology.) Such
a suitable subclass is the collection of local functions defined below (see Liggett 1985). The
non-negative (and uniformly bounded) quantitiesc(x, η) in (2.3) are called the transition rates
of the spin system. We start by specifying the transition rates of the biased (random) voter
model.

Definition 2.1. The biased voter model is the spin system with transition rates

cβ(x, η) = β(x)η(x) +
∑
y∈Zd

p(y − x){η(x)[1− η(y)] + η(y)[1− η(x)]} (2.4)

where

β : Zd → [0,∞) sup
x∈Zd

β(x) <∞ (2.5a)

p : Zd → [0, 1]
∑
x∈Zd

p(x) = 1 and p(0) = 0. (2.5b)

The biased random voter model is the spin system with transition rates (2.4) where
{β(x), x ∈ Zd} is a collection of independent identically distributed random variables with
joint distributionB.
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The interpretation of the non-biased voter model (i.e. the spin system with transition rates
(2.4), but withβ = 0) is well known, see e.g. Liggett (1985). In this interpretationZd is viewed
as a collection of individuals, each of which has one of two possible opinions (0 or 1) on a
political issue. At the event times of a Poisson process the individual at sitex reassesses his
opinionη(x) in the following way: he consults a ‘friend’y with probabilityp(y−x) and then
adopts his positionη(y). The presence ofβ in the transition rates of the biased voter model
can be interpreted as the presence of a propaganda mechanism which drives each individual
to opinion 0;β(x) is then a measure for the susceptibility of individualx for that propaganda.
Other interpretations of the biased (random) voter model are possible; for example, it can be
viewed as a zero-temperature kinetic Ising model in a (random) magnetic field.

From the explicit form of the transition rates it is immediately obvious that configuration
η = 0 is absorbing, and thusδ0, the Dirac measure with unit mass atη = 0, is invariant. From
the well known ergodicity criterionM < ε (Liggett 1985) or from duality (see below) one
can deduce that the biased voter model is (exponentially) ergodic wheneverβ is uniformly
positive, i.e.

inf
x∈Zd

β(x) > 0 (2.6)

irrespective of the values ofp(x). On the other hand, the non-biased voter model (β = 0) is
not ergodic. A more refined ergodicity criterion for the biased voter model should, of course,
contain conditions onp(x), e.g. irreducibility. It is indeed possible to prove ergodicity under
conditions weaker than (2.6). However, we need (2.6) further on to prove our main result. In
the present paper we restrict ourselves to the case of bias always for opinion ‘0’. The more
general case where the bias can be in favour of both opinions 0 and 1 will not be treated here.
In that case the dual process depends on the bias and the analysis becomes more delicate.

For the formulation of our main result we need the following definitions and assumption.

Definition 2.2. OnX we define the partial order relation6 by

η 6 ζ ⇔ η(x) 6 ζ(x) for everyx ∈ Zd . (2.7)

A real-valued functionf : X→ R is said to be monotone whenever

η 6 ζ ⇒ f (η) 6 f (ζ ). (2.8)

A spin system with transition ratesc(x, η) is said to be attractive if

η 6 ζ ⇒
{
c(x, η) 6 c(x, ζ ) if η(x) = ζ(x) = 0

c(x, η) > c(x, ζ ) if η(x) = ζ(x) = 1.
(2.9)

Thus, a spin system is attractive if, for everyx ∈ Zd , [1−2η(x)]c(x, η) is a monotone function
of η.

It is well known that a spin system is attractive if and only if it is monotone, in the sense that
S(t)f , defined byS(t)f (η) = Eηf (ηt ), is monotone iff is monotone (Liggett 1985).

Definition 2.3. Let Y = {A : A finite subset ofZd}. This is a countable set. A function
f : X→ R is said to be local if there exists anA ∈ Y such that

∀η, ζ ∈ X : η = ζ onA ⇒ f (η) = f (ζ ) (2.10)

whereη = ζ onA means thatη(x) = ζ(x) for everyx ∈ A. The smallest setA for which
(2.10) holds will be denoted by3(f ). The space of continuousC(X) will be equipped with
the uniform norm‖ · ‖, defined by

‖f ‖ = sup
η∈X
|f (η)|. (2.11)

With respect to this norm, the set of local functions is dense inC(X) (Stone–Weierstrass).
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In the statement of theorems 1 and 2, we will suppose that the following key assumption holds.
Under this assumption the theorem of Donsker and Varadhan (theorem 2.8 below) holds. It is
automatically satisfied when the kernel of the random walk has a finite variance.

Assumption 2.4.Let, for everyk ∈ Rd ,
p̂(k) =

∑
x∈Zd

p(x) exp(i〈k, x〉) (2.12)

where〈· , ·〉 is the Euclidean scalar product defined onRd . Assume that

• p̂(k) = 1 if and only ifk = 2π(n1, . . . , nd), wheren1, . . . , nd are integers.
• p̂(k) = 1−D(k)+o(|k|α)as|k| = √〈k, k〉 → 0, where0< α 6 2andexp(−D(k)) is the

characteristic function of a symmetric stable law of indexα inRd which is non-degenerate,
i.e.

D(k) =


d∑

i,j=1

Dijkikj for some positive definite matrixDij if α = 2∫
Sd

∫ ∞
0

[1− cos〈k, ry〉] r−(1+α) dr σ (dy) if α < 2.

(2.13)

In the expression forD(k), σ is a symmetric measure on the unit ballSd in Rd , and the
assumption of non-degeneracy means that the support ofσ spansSd .

The above assumptions on̂p imply that the random walk with transition probabilitiesp(x)
is irreducible and the distributionp(x) belongs to the domain of normal attraction of a non-
degenerate symmetric stable law of index0 < α 6 2 (Spitzer 1976). The most common case
corresponds toα = 2 which occurs when the underlying random walk kernelp(x) has finite
variance, i.e.

∑
x∈Zd |x|2p(x) <∞. In this case

Dij =
∑
x∈Zd

xixjp(x) (2.14)

is simply the diffusion matrix of the Brownian motion obtained by rescaling the random walk.
The caseα < 1 corresponds to an infinite variance, in which case rescaling of the random
walk leads to a symmetric stable law of indexα.

Theorem 2.5 (Main result). Suppose that assumption 2.4 holds.

(a) If B({β : β(0) 6= 0}) > 0, then there exists a constantν1 > 0 such that

lim sup
t→∞

t−d/(d+α) log
∫
‖Sβ(t)f − δ0(f )‖B(dβ) 6 −Cd,α(ν1) (2.15a)

for every local functionf .
(b) If B({β : β(0) = 0}) > 0, then there exists a constantν2 > ν1 such that

lim inf
t→∞ t−d/(d+α) log

∫
‖Sβ(t)f − δ0(f )‖B(dβ) > −Cd,α(ν2)|3(f )| (2.15b)

for every non-constant monotone local functionf .

In (2.15)Cd,α is an increasing function defined on[0,∞) given by

Cd,α(ν) = (d + α)

[(
λ

d

)d(
ν

α

)α]1/(d+α)

(2.16)

whereλ > 0 is a constant specified in theorem 2.8 below.
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Remark 2.6. In the proof of theorem 2.5 we will choose the following values forν1 andν2:

ν1 = − log
∫

1

1 +β(0)
B(dβ)

ν2 = − logB({β : β(0) = 0}).
(2.17)

Using Jensen’s inequality one sees easily thatν1 6 log(1 + β̄), whereβ̄ = ∫ β(0)B(dβ).
Remark 2.7. The relaxation for typical realizations of the disorder in a general class of
(quenched) random spin systems has been studied by Gielis and Maes (1996). Their result
for the biased random voter model reads in our notations as follows (see also Klein 1994).
Supposep(x) = 0 whenever|x| 6= 1 and letK >

(
d +
√
d(d + 1)

)2
. Then, there exists a

constantv0 = v0(K, d) > 1 such that for all1 < v < v0 andm > 0 there is a positive
constantε = ε(K, d,m, v) such that∫ [

log

(
1 +

2

β(0)

)]K
B(dβ) < ε (2.18)

implies

lim sup
t→∞

‖Sβ(t)f − δ0(f )‖(
log(1 + t)

)v 6 −m (2.19)

for every local functionf and B-almost every realizationβ of the disorder. Notice that a
necessary condition for (2.18) to hold isB({β : β(0) = 0}) = 0.

Theorem 2.5 will be proven in section 3. The main ingredient of the proof is the following
result of Donsker and Varadhan (1979). The restrictions we pose on the stochastic matrix
p(x, y) in assumption 2.4 are sufficient for the validity of this result.

Theorem 2.8 (Donsker and Varadhan).Let Rt be the collection of (distinct) sites visited
in the time interval[0, t ] by a continuous-time random walk(Xt )t>0 on Zd with transition
probabilitiesPx(Xt = y) = pt(y − x), where

pt(x) = e−t
∞∑
n=0

tn

n!
p(n)(x) (2.20)

andp(n)(x) are then-step transition probabilities of the discrete-time random walk with one-
step transition probabilitiesp(x) (Spitzer 1976). SupposeL is the infinitesimal generator of
the symmetric stable process inRd of the index0< α 6 2 corresponding toD(k), i.e.

Lf (x) =


d∑

i,j=1

Dij

∂2

∂xi∂xj
f (x) if α = 2∫

Sd

∫ ∞
0

[
1
2(f (x + ry) + f (x − ry))− f (x)] r−(1+α) dr σ (dy) if α < 2

(2.21)

for every smooth real-valued functionf onRd . Then, for everyν > 0,

lim
t→∞ t

−d/(d+α) logE0 exp(−ν|Rt |) = −Cd,α(ν) (2.22)

whereCd,α(ν) is defined in theorem 2.5 and

λ = inf
G
λ(G) > 0 (2.23)

the infimum being over all open subsetsG in Rd of unit volume andλ(G) is the smallest
eigenvalue of−L with Dirichlet boundary conditions forG.
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3. Proof of theorem 2.5

The proof of theorem 2.5 is an application of theorem 2.8, combined with attractiveness and
duality. We start with a description of the coalescing dual process of the biased voter model
(see also Liggett 1985).

3.1. Duality for the biased voter model

The dual process is a continuous-time Markov chain with configuration spaceY, see
definition 2.3 and the construction below. In the case of a coalescing duality the choice
for the duality function is

H : X× Y→ {0, 1} : (η,A) 7→
∏
x∈A

η(x). (3.1)

In the proof of theorem 2.5 we will make use of the property thatH(η,A) is increasing in the
first argument and decreasing in the second. Applying operator�β , defined in (2.3) and (2.4),
to the local functionH(· , A) gives, forA ∈ Y,

�βH(η,A) =
∑
x∈Zd

cβ(x, η)[H(η
x,A)−H(η,A)]

=
∑
B∈Y

q(A,B)[H(η,B)−H(η,A)] − Vβ(A)H(η,A) (3.2)

whereVβ is given by

Vβ(A) =
∑
x∈A

β(x) (Feynman–Kac potential) (3.3)

and the transition ratesq(A,B) are given by

q(A,B) =


∑
y∈A

p(y − x) if ∃ x ∈ A : B = A \ {x}

p(y − x) if ∃ x ∈ A, ∃ y 6∈ A : B = (A \ {x}) ∪ {y}
0 otherwise.

(3.4)

q(A,B) are the transition rates of a continuous-time Markov chain(At )t>0 onY, which is
called the coalescing dual process of the biased voter model. This terminology finds its origin
in the interpretation ofAt as the finite collection of occupied sites inZd at timet ; each site
is occupied by at most one particle and only a finite number of particles are present. The
transition ratesq(A,B) show that a particle at sitex ∈ Zd is removed after an exponentially
distributed waiting time with mean 1, independent of the attendance of particles at other sites
and is replaced with probabilityp(y − x) by a particle at sitey ∈ Zd . If after this action two
particles occupy the same sitey, these two particles coalesce.

Notice that the transition ratesq(A,B) are independent of the biasβ and, in particular,
the coalescing dual processes of the biased and the non-biased voter model coincide.

The following duality relation (or Feynman–Kac formula) explains why(At )t>0 is called
a dual process of the biased voter model:

EηβH(ηt , A) = EAH(η,At) exp

{
−
∫ t

0
Vβ(As) ds

}
. (3.5)

A proof of equation (3.5) can be found in Liggett (1985). We remark that the bias introduces
a Feynman–Kac term in (3.5).
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In the proof of theorem 2.5 we will use the property that every local functionf has a
unique representation of the form

f (η) =
∑
A∈Y

f̂ (A)H(η,A). (3.6)

Obviously,f̂ (A) = 0 unlessA ⊂ 3(f ).

3.2. Upper bound

In this section we use the notation

6(f ) =
∑
A6=∅
|f̂ (A)| (3.7)

wheref is an arbitrary local function, and start with the following estimate:

‖Sβ(t)f − δ0(f )‖ 6
∑
A6=∅
|f̂ (A)| sup

η∈X
EηβH(ηt , A)

=
∑
A6=∅
|f̂ (A)|Eη=1

β H(ηt , A)

6 6(f ) max
x∈3(f )

E1
βH(ηt , {x})

= 6(f ) max
x∈3(f )

E{x} exp

{
−
∫ t

0
Vβ(As) ds

}
= 6(f ) max

x∈3(f )
Ex exp

{
−
∫ t

0
β(Xs) ds

}
. (3.8)

The first step in (3.8) follows from the identity (3.6) and∫
H(η,A) δ0(dη) =

{
1 if A = ∅
0 if A 6= ∅. (3.9)

The second step in (3.8) uses the attractiveness of the biased voter model and the property that
the duality function is increasing in its first argument. The third step in (3.8) is a consequence
of the fact that the duality function is decreasing in its second argument. The fourth step in
(3.8) is a particular case of the duality relation (3.5), while the fifth step uses that the dual
process(At )t>0 with initial configuration{x} is identical to the random walk(Xt )t>0 starting
from positionx. Integrating (3.8) with respect toB we obtain∫
‖Sβ(t)f − δ0(f )‖B(dβ) 6 6(f )

∫
max
x∈3(f )

Ex exp

{
−
∫ t

0
β(Xs) ds

}
B(dβ)

6 6(f )
∫ ∑

x∈3(f )
Ex exp

{
−
∫ t

0
β(Xs) ds

}
B(dβ)

= 6(f )|3(f )|E0
∫

exp

{
−
∫ t

0
β(Xs) ds

}
B(dβ). (3.10)

The last step in (3.10) uses Fubini’s theorem and the translation invariance ofB. To conclude
the proof of the upper bound in theorem 2.5 we need a suitable upper bound for

E0
∫

exp

{
−
∫ t

0
β(Xs) ds

}
B(dβ). (3.11)
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To proceed, we consider the discrete-time analogue(X̃n)n∈N of (Xt)t>0. Let (Nt )t>0 be the
Poisson process with unit rate,

l̃n(x) =
n∑

m=0

δ(x, X̃m) and R̃n = {x ∈ Zd : X̃m = x for somem = 0, . . . , n}.

(3.12)

The quantity in (3.11) equals

∞∑
n=0

P(Nt = n) Ẽ0
∏
x∈R̃n

(∫
1

1 +β(0)
B(dβ)

)l̃n(x)
. (3.13)

Using l̃n(x) > 1 whenx ∈ R̃n shows that (3.13) is bounded above by

∞∑
n=0

P(Nt = n) Ẽ0

(∫
1

1 +β(0)
B(dβ)

)|R̃n|
. (3.14)

Returning to the continuous-time random walk(Xt)t>0 we obtain

E0
∫

exp

{
−
∫ t

0
β(Xs) ds

}
B(dβ) 6 E0

(∫
1

1 +β(0)
B(dβ)

)|Rt |
(3.15)

with Rt the range of the continuous-time random walk(Xt )t>0 in the time interval [0, t ], i.e.

Rt = {x ∈ Zd : Xs = x for some 06 s 6 t}. (3.16)

Definingν1 as in remark 2.6 and applying theorem 2.8, completes the proof of the first statement
in theorem 2.5. �

3.3. Lower bound

The main purpose of the second statement of theorem 2.5 is to prove that the upper bound in
the first statement is optimal. In the proof of the second part of theorem 2.5 we make use of
the following two lemmas.

Lemma 3.1. A local functionf : X→ R is monotone if and only if∑
A⊂B2

A∩(B2\B1)6=∅

f̂ (A) > 0 for every B1 ⊂ B2 ⊂ Zd . (3.17)

Proof. The conclusion of the lemma follows from the observation

f (ζ )− f (η) =
∑
A6=∅

f̂ (A)[H(ζ,A)−H(η,A)] (3.18)

and the monotonicity ofH(· , A) for everyA ∈ Y, becauseη 6 ζ if and only if there exist
two subsets ofZd , B1 andB2, such thatB1 ⊂ B2, η = 1 onB1, η = 0 off B1, ζ = 1 onB2

andζ = 0 off B2. �
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Lemma 3.2. Suppose3 is a finite set,{xA,A ⊂ 3} ⊂ R, {yA,A ⊂ 3} ⊂ [0, 1], x∅ = 0,∑
B⊂A xB > 0 and yA =

∏
a∈A y{a} for everyA ⊂ 3, where it is understood thaty∅ = 1.

Then, for|3| = 2, 3, . . . ,∑
A⊂3

xAyA(1− y3\A) >
∑
a∈3

x{a}y{a}
∏

b∈3\{a}
(1− y{b}) > 0. (3.19)

In particular, ∑
A⊂3

xAyA >
(∑
A⊂3

xA

)
y3. (3.20)

The last inequality also holds if|3| = 1.

Proof. Let, forA ⊂ 3,

zA =
∑
B⊂A

xB. (3.21)

Inverting (3.21) yields∑
A⊂3

xAyA(1− y3\A) =
∑
A⊂3

(∑
B⊂A

(−1)|A\B|zB

)
yA(1− y3\A)

=
∑
B⊂3

zB
∑

A:B⊂A⊂3
(−1)|A\B|yA(1− y3\A)

=
∑
B⊂3

zB
∑

D⊂3\B
(−1)|D|(yB∪D − y(3\B)∪B)

=
∑
B⊂3

zByB
∑

D⊂3\B
(−1)|D|(yD − y3\B)

=
∑
B⊂3
B 6=∅

zByB
∏
a∈3\B

(1− y{a}). (3.22)

The last sum contains only non-negative terms. Thus, reducing it to a sum over all singletons
in 3 gives a lower bound. Finally, remarking thatz{a} = x{a} for every a ∈ 3, proves
(3.19). �

Due to the attractiveness of the biased voter model,Sβ(t)f is monotone wheneverf is
monotone. In particular,

Sβ(t)f − δ0(f ) > 0 (3.23)

whenf is monotone (becauseδ0 is invariant). Moreover, applying the inequality (3.20) of
lemma 3.2 toxA = f̂ (A) (see also lemma 3.1),yA = H(ηt , A) and3 = 3(f ), shows that

Sβ(t)f (η)− δ0(f ) =
∑
A6=∅

f̂ (A)EηβH(ηt , A) >
(∑
A6=∅

f̂ (A)

)
EηβH(ηt ,3(f )) > 0. (3.24)

Due to the attractiveness and the monotonicity ofH(· , A),

‖Sβ(t)f − δ0(f )‖ >
(∑
A6=∅

f̂ (A)

)
E1
βH(ηt ,3(f )). (3.25)
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Now, we will derive a lower bound for
∫
E1
βH(ηt ,3(f ))B(dβ). First, notice that∫

E1
βH(ηt , A)B(dβ) =

∫
EA exp

{
−
∑
x∈Zd

β(x)lt (x)

}
B(dβ)

= EA
∏
x∈R̄t

∫
exp{−β(x)lt (x)}B(dβ)

> EA
∏
x∈R̄t

B({β : β(x) = 0})

= EA exp(−ν2|R̄t |) (3.26)

whereν2 is defined in remark 2.6,

lt (x) =
∫ t

0
IAs (x) ds and R̄t =

⋃
06s6t

As. (3.27)

If A = {x1, . . . , xn}with distinctxi ’s, we couple(At ) and(X1
t , . . . , X

n
t )withXi0 = xi in such

a way thatAt ⊂ {X1
t , . . . , X

n
t } for all t > 0, whereX1

t , . . . , X
n
t are independent random walks

with transition probabilitiespt(x) (identical to the coupling used in the proof of lemma 1.5
of chapter V in Liggett (1985)). Since in this coupling the rangeR̄t of the process(At ), see
(3.27), can only be smaller than the rangeRnt of the process(X1

t , . . . , X
n
t ), i.e.

Rnt =
⋃

06s6t
{X1

s , . . . , X
n
s } (3.28)

we find

EA exp(−ν2|R̄t |) > E(x1,...,xn) exp(−ν2|Rnt |)
>
∏
x∈A
Ex exp(−ν2|Rt |)

= [E0 exp(−ν2|Rt |)
]|A|
. (3.29)

In the two last lines of (3.29)Rt is defined by (3.16). Summarizing,

log
∫
‖Sβ(t)f − δ0(f )‖B(dβ) > log

∑
A6=∅

f̂ (A) + |3(f )| logE0 exp(−ν2|Rt |). (3.30)

Applying theorem 2.8 gives the desired result. �
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